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Abstract
In this paper,we propose a physics-inspired contrastive learning paradigm for low-light enhancement, calledPIE. PIEprimarily
addresses three issues: (i) To resolve the problem of existing learning-based methods often training a LLE model with strict
pixel-correspondence image pairs, we eliminate the need for pixel-correspondence paired training data and instead train with
unpaired images. (ii) To address the disregard for negative samples and the inadequacy of their generation in existing methods,
we incorporate physics-inspired contrastive learning for LLE and design the Bag of Curves (BoC) method to generate more
reasonable negative samples that closely adhere to the underlying physical imaging principle. (iii) To overcome the reliance
on semantic ground truths in existing methods, we propose an unsupervised regional segmentation module, ensuring regional
brightness consistency while eliminating the dependency on semantic ground truths. Overall, the proposed PIE can effectively
learn from unpaired positive/negative samples and smoothly realize non-semantic regional enhancement, which is clearly
different from existing LLE efforts. Besides the novel architecture of PIE, we explore the gain of PIE on downstream tasks such
as semantic segmentation and face detection. Training on readily available open data and extensive experiments demonstrate
that our method surpasses the state-of-the-art LLE models over six independent cross-scenes datasets. PIE runs fast with
reasonable GFLOPs in test time, making it easy to use on mobile devices. Code available

Keywords Low-light enhancement · Physics-inspired contrastive learning · Super-pixel segmentation

1 Introduction

Capturing images under low illumination remains a signifi-
cant source of errors in camera imaging, further leading to
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image details lost, color under-saturation, low-contrast/low
dynamic range, and uneven exposure. Such degeneration
severely hinders downstream vision tasks, e.g., semantic seg-
mentation (Wang et al., 2022; Cho et al., 2020; Liang et al.,
2021) and object detection (Wu et al., 2022b; Al Sobbahi
& Tekli, 2022; Liang et al., 2014; Geng et al., 2021), from
operating smoothly in vision-based systems. Existing meth-
ods formulate low-light enhancement (LLE) as a mapping
problem with three main challenges.

First, the existing learning-basedmethods in the low-level
domain often train a model with strict pixel-correspondence
image pairs via strong supervisions (Lore et al., 2017; Wei et
al., 2018; Zhang et al., 2019; Xu et al., 2020; Ren et al., 2019;
Ignatov et al., 2017;Zhou et al., 2023).However, high-quality
pixel-correspondence image pairs are challenging to acquire
in practice. For example, Ignatov et al. (2017) proposed to
acquire them from a DSLR camera to refine the imaging of a
mobile phone camera. It brings complicated registration and
pixel-by-pixel calibration to image pairs.

Second, to release pixel-correspondence image pairs,
some works (Huang et al., 2023; Shi et al., 2022) have intro-
duced contrastive learning for LLE, which adopt the normal-
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Fig. 1 Impact of training data. The proposed PIE (d), which gener-
ates negative samples using physical laws closer to realistic imaging,
produces enhanced results with better brightness, color, contrast, and
naturalness under extremely dark conditions than SCL-LLE (c) and
SCL-LLE without any negative samples (b). More specifically, the first
sample in (d) has a higher dynamic range and better subjective feeling.

In the second sample in (d), the saturation of the girl’s T-shirt and the
sunset surrounding is much higher and presents a better global stereo-
scopic atmosphere of the scene. The comparison between (c) and (d)
illustrates the necessity of introducing negative samples. In contrast to
(c), the improvement in image quality in (d) reflects the crucial role of
negative sample quality in contrastive learning

light images as positive samples and the over/underexposed
images as negative samples to guide the training. As shown
in Fig. 1b, the selection of negative samples in contrastive
learning significantly impacts the results of LLE. The qual-
ity of negative samples and the specific contrastive learning
strategy would be more significant for LLE, if we wish to
release the pixel-correspondence image pairs while main-
taining consistent performance with the LLE model with the
strict image pairs. Therefore, another concern of this work is
whichnegative samples to choose forwhat kindof contrastive
learning, to provide diverse and representative negative sam-
ples, squeezing and filling the feature space, enabling the
learned LLE model to provide a visual experience closer
to the underlying imaging principles. Most existing meth-
ods mainly rely on directly using underexposed/overexposed
images from existing low-light datasets (Huang et al., 2023)
or artificially adjusting image brightness based on empirical
experience (Liang et al., 2022) to obtain negative samples.
However, due to limitations in the quality of the dataset
itself and the constraints of human expertise, the boundaries
between negative and positive samples generated by these
two methods, as shown in Fig. 2b and c, may not be signifi-
cant.

Third, the enhancement strategies for the background
and foreground should be different. In our previous work
(Liang et al., 2022), we utilize semantic information to dif-
ferentiate the enhanced regions and maintain the consistency
of brightness within the same semantic category. Wu et
al. (2023) also employs semantic information to maintain
consistent brightness for each semantic. However, the intro-
duction of semantic segmentation destroys the universality
and flexibility of the method, as semantic segmentation is

a full-supervision training setting with massive pixel-level
annotation.

In order to effectively learn fromunpairedpositive/negative
samples and smoothly realize non-semantic regional enhance-
mentwith underlying imagingprinciples,weproposephysics-
inspired contrastive learning for low-light image enhance-
ment (PIE). In contrastive learning, we design the Bag
of Curves (BoC) solution by leveraging the Image Sig-
nal Processing (ISP) pipeline (i.e., the Gamma correction
and Tone mapping) to destroy positive samples but follow
the basic imaging rules to generate negative samples. This
method generates under/overexposed samples in a way that
is more closely aligned with the underlying physical imaging
principles. At the same time, the design of the regional seg-
mentationmodulemaintains regional brightness consistency,
realizes region-discriminate enhancement, and releases from
semantic labels. PIE casts the image enhancement task as a
multi-task joint learning problem, where LLE is converted
into three constraints—contrastive learning, regional bright-
ness consistency, and feature preservation, simultaneously
ensuring the quality of global/local exposure, texture, and
color. We also pay more attention to downstream tasks (i.e.,
semantic segmentation, and face detection) to explore if we
can realize performance gain from our LLE scheme. We find
that our method potentially benefits the downstream tasks
under dark conditions.

The contributions are three folds:

• A physics-inspired contrastive learning approach for
real-world cross-scene LLE, without any paired training
images and pixel-level annotation:
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Fig. 2 Feature Visualization of generating negative samples using
different methods. Compared to the method of artificially adjusting
brightness (b) and low-light dataset (c), our method (a) exhibits a clear
boundary between positive and negative samples. The samples in (b)

are derived from positive and negative samples in SCL-LLE (Liang et
al., 2022), while the images in (c) are sourced from the SICE (Cai et
al., 2018) dataset

(1) a physics-inspired approach called “Bag of Curves”
generates negative samples for contrastive learning
using principles closer to the underlying physical
imaging mechanism.

(2) an unsupervised regional segmentation module to
maintain regional brightness consistency, realize
region-discriminate enhancement, and release from
semantic labels.

(3) a multi-task joint learning with three constraints—
contrastive learning, regional brightness consistency,
and feature preservation, simultaneously ensuring
exposure, texture, and color consistency.

• PIE is compared with SOTAs via comprehensive exper-
iments on six independent datasets in terms of visual
quality, no and full-referenced image quality assessment,
and human subjective survey. All results consistently
endorse the superiority and efficiency of the proposed
approach.

• We demonstrate that our PIE is friendly to downstream
high-level vision tasks and easy to joint-learn with them.

This work is partially presented in our earlier conference
version (Liang et al., 2022). We have introduced many new
findings and improvements compared to the conference ver-
sion. We have two new core contributions. First, we design
a “Bag of Curves” solution inspired by the physical imaging
principle to generate negative samples to replace the man-
ual process. Second, we design an unsupervised regional
segmentation module to maintain regional brightness con-
sistency to replace the supervised semantic segmentation
module.We alsomodify our contrastive learning loss for bet-
ter performance, present more extensive experiments related
to the aforementioned improvements compared with more
recent methods, and provide more discussion with down-
stream tasks.

2 RelatedWork

2.1 Low-Light Image Enhancement

Conventional Methods LLE has been actively studied as
an image-processing problem for a long. Early efforts are
commonly made towards the use of handcrafted priors with
empirical observations (Pizer et al., 1990; Land, 1977; Xu et
al., 2014; Guo et al., 2016) to deal with the LLE problem.
Histogram equalization (Pizer et al., 1990) used a cumulative
distribution function to regularize the image’s pixel values
and evenly distribute overall intensity levels. However, this
kind of operation naturallymakes it easy to cause over/under-
exposure. Without local adaptation, the enhancement results
in intensive noise and undesirable illumination. Later meth-
ods constrained the equalization process with several kinds
of priors, e.g. mean intensity preservation (Ibrahim & Kong,
2007), noise robustness, andwhite andblack stretching (Arici
et al., 2009), to improve the overall visual quality of the
adjusted image. Retinex model (Land, 1977) and its multi-
scale version (Jobson et al., 1997) decomposed the brightness
into illumination and reflectance and then processed them
separately. Wang et al. (2013) constructed a brightness filter
for Retinex decomposition and tried to preserve the natu-
ralness while enhancing details in low-light images. The
reflectance component is commonly assumed to be consistent
under lighting conditions; thus, light enhancement is formu-
lated as an illumination estimation problem. The gray-scale
transformation (Xu et al., 2014) is a method based on the
spatial domain, which enhanced the image by modifying the
distribution and dynamic range of the gray-scale value of the
pixels. Guo et al. (2016) introduced a structural prior to refin-
ing the initial illumination map and finally synthesized the
enhanced image according to the Retinex theory. However,
these handcrafted constraints/priors are not self-adaptive to
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recover image details and color. This results in washing out
details, local under/over-saturation, uneven exposure, or halo
artifacts.

Data-Driven Methods In the past decade, data-driven meth-
ods (Li et al., 2021a) have achieved significant advancements
in thefield of low-light image enhancement. Lore et al. (2017)
proposed a variant stacked sparse denoising autoencoder to
enhance the degraded images. RetinexNet (Wei et al., 2018)
leveraged a deep architecture based on Retinex to enhance
low-light images. Zhang et al. (2019) developed three sub-
networks for layer decomposition, reflectance restoration,
and illumination adjustment based on Retinex. RUAS (Liu et
al., 2021) constructed the overall LLE network architecture
by unfolding its optimization process. The above methods
are trained based on image pairs with strict pixel correspon-
dence. Zhou et al. (2022) introduced LEDNet, a powerful
network designed for simultaneous low-light enhancement
and deblurring tasks. Jiang et al. (2021) reported an unsu-
pervised method using normal-light images that do not have
low-light images as correspondences. Zero-DCE (Guo et al.,
2020), FlexiCurve (Li et al., 2023a), CuDi (Li et al., 2022)
and ReLLIE (Zhang et al., 2021a) reformulated the LLE
task as an image-specific curve estimation problem with a
fixed default brightness value. Fan et al. (2020) used seman-
tic information to guide the reconstruction of the reflection
of Retinex. DNF (Jin et al., 2023) is a decouple and feedback
framework for theRAW-basedLLIE. CLIP-LIT (Liang et al.,
2023) introduced an initial prompt pair, enforcing text prompt
and backlit image similarity using CLIP latent space. SCL-
LLE (Liang et al., 2022) introduced semantic information to
the brightness reconstruction and paid more attention to the
dependency among the semantic elements via the interaction
of high-level semantic knowledge and low-level signal pri-
ors. The proposed PIE maintains the brightness consistency
of image regions without relying on semantic ground truths,
which is clearly different from existing LLE efforts.

2.2 Contrastive Learning for Vision Tasks

Contrastive learning (He et al., 2020; Chen et al., 2020; Ser-
manet et al., 2018; Tian et al., 2020; Henaff, 2020) is from the
self-supervised learning paradigm, which is characterized by
using pretext tasks to mine its supervisory information from
original data for downstream tasks. For a given input, con-
trastive learning aims to pull it together with the positives and
push it apart from the negatives in feature space. Previous
works have applied contrastive learning to high-level vision
tasks because these tasks are inherently suited for modeling
the contrast (He et al., 2020; Chen et al., 2020; Tian et al.,
2020) between positive and negative samples. It has also been
applied to low-level visual tasks, such as deraining (Chen et
al., 2022), underwater image enhancement (Han et al., 2021),

and dehazing (Wu et al., 2021). Huang et al. (2023) and Shi et
al. (2022) introduced a contrastive learning module for low-
light enhancement. Huang et al. (2023) employed contrastive
learning to train a two-stream encoder for feature extraction.
Shi et al. (2022) used contrastive learning techniques to train
the SFEmodel for extracting structure maps. However, these
methods overlooked the importance of the way to select posi-
tive and negative samples in contrastive learning. In addition,
most of the existing contrastive learning methods rely heav-
ily on a large number of negative samples and thus require
either large batches or memory banks (Li et al., 2021b). In
our approach, we employ only a couple of negative samples
for one positive sample and introduce a random mapping
strategy to avoid the risk of overfitting.

2.3 Gamma Correction and ToneMapping

The Image Signal Processing (ISP) pipeline is used in mod-
ern digital cameras to convert raw camera sensor data into
high-quality, human-readable RGB images. ISP (Karaimer
& Brown, 2016) consists of several operations, including
image denoising, noise reduction, white balance, color space
conversion, Gamma correction, and Tone mapping.

Gamma correction (Farid, 2001; Yuan & Sun, 2012) is a
standard step of the image processing pipeline to adjust the
brightness of an image for display on different devices. It
transformed the pixel value following a non-linear power-
law function. Tone mapping (Mantiuk et al., 2008) refers to
the process of converting high dynamic range (HDR) images
to low dynamic range (LDR) images. HDR images in the
RAW domain have higher color depth and dynamic range
than LDR images, allowing them to better represent the
brightness and color details in a scene, but they cannot be
fully displayed on conventional RGB displays. Therefore,
Tone mapping is needed for HDR images to present as much
HDR image information as possible on LDR displays. Zhang
et al. (2023) combined Tone mapping with GAN to adjust
the brightness of images. Drago et al. (2003) and Yongqing
(2013) respectively used two different Tone mapping meth-
ods based on different curves to adjust the brightness of the
image. Inspired by Gamma correction and Tone mapping,
we propose a physics-inspired contrastive learning method
and introduce “Bag of Curves” to generate negatives for con-
trastive learning.

3 The Proposed PIE

3.1 Problem Formulation and Architecture

Fundamentally, low-light image enhancement canbe regarded
as seeking a mapping function F , such that IH = F(IL) is
the desired image, which is enhanced from the input image
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Fig. 3 The overall architecture of PIE. It includes a low-light image
enhancement (LLE) network, a contrastive learning module (the blue
block) boosted by Bag of Curves (BoC), a regional segmentation mod-
ule (the green block), and a VGG-16 feature extractor (the red block).

PIE jointly minimizes the contrastive learning loss Lc, which consists
of two components, LcE and LcG , feature preserving loss L f p , and
regional brightness consistency loss Lrc

IL . In our design,we introduce a prior of contrastive learning:
the contrastive samples, including the negatives IN , i.e., the
under/overexposed images which are generated by our pro-
posed Bag of Curves solution, and the positives IP , i.e., the
normal-light images. Therefore, we formulate a new map-
ping function as follows:

IH = F(IL , IN , IP ) (1)

As depicted in Fig. 3, PIE consists of a low-light image
enhancement network, a contrastive learning module, and
a regional segmentation module. Specifically, our approach
comprises a low-light image enhancement network, which
leverages a U-Net-like backbone (Guo et al., 2020) to gen-
erate a pixel correction curve that remaps each pixel. We
use VGG-16 (Simonyan & Zisserman, 2014) as the fea-
ture extraction network. Specifically, for a given image
IL , it is first input to the image enhancement network.
Then, the enhanced image IH is fed into the regional seg-
mentation module, ensuring brightness consistency within
each region. For the contrastive learning module, images
enhanced by image enhancement network IH serve as the
anchor for contrastive learning, images under normal light-
ing IP serve as positive samples, and negative samples are
over/underexposed images IN obtained from images under
normal lighting through Bag of Curves. To optimize our

approach, we employ three types of losses corresponding to
the framework’s three key aspects: the contrastive learning
loss Lc, feature preserving loss L f p, and regional brightness
consistency loss Lrc.

In PIE, we solve the challenges of manually dividing
positive and negative samples in contrastive learning as
on (Liang et al., 2022) and eliminate the dependency on
semantic ground truths. Specifically, we first propose a “Bag
of Curves” method that combines the physical imaging prin-
ciple with contrastive learning to generate negative samples,
which aids in compressing the feature space and enabling the
model to effectively adjust the distance between the anchor
and positive/negative samples. Additionally, we introduce an
unsupervised regional segmentation module that maintains
regional brightness consistency while removing the reliance
on semantic ground truths.

3.2 Contrastive LearningModule

3.2.1 Bag of Curves

Choosing appropriate negative samples is crucial for the suc-
cess of contrastive learning, as it enables the model to learn
sample representations that capture the unique characteris-
tics of the data. For an LLE task, the construction of negative
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samples in contrastive learning should better follow the phys-
ical laws of imaging as closely as possible and mimic both
overexposure and underexposure. Our previous work (Liang
et al., 2022) has achieved non-paired contrastive learning,
but the positive and negative samples used are still provided
by the manual process—manually adjusting the brightness
of images to generate a set of under/overexposed negatives.

We leverage Tone mapping and Gamma correction in ISP
for brightness adjustment and utilize this prior knowledge
to adjust the brightness of images to generate negative sam-
ples that are more consistent with physical imaging laws.We
follow the following principles when choosing curves: (1) It
should be able to effectively adjust the overall brightness of
the image in a reasonable manner. (2) The form of the curve
should be as simple as possible for ease of implementation
and computation. (3) Priority is given to commonly used
curves in existing methods. Taking into account these rea-
sons, we choose Gamma, Logarithmic, and Sigmoid curves
to simulate the inverse Gamma correction and Tone mapping
process for adjusting the brightness of the image.

Due to the different brightness ranges captured by the
human eyes and digital cameras, the brightness and color
captured by cameras (when viewed on a standard monitor)
look different from what the human eye perceives. When
rendering high dynamic range (HDR) images, the brightness
values can exceed the maximum value that a monitor can
show. Therefore, we need to adjust the brightness range of the
image to convert HDR images to low dynamic range (LDR)
that can be appropriately displayed on amonitor. The process
of adjusting the brightness of an image is commonly referred
to as Tone mapping. After Tone mapping, Gamma correction
is usually performed to account for humans’ non-linear per-
ception of natural brightness and to adapt to the monitor’s
display characteristics, ultimately outputting the correspond-
ing brightness to the display. Tone mapping (Mantiuk et al.,
2008) and Gamma correction (Farid, 2001) are commonly
used on physical devices such as cameras and monitors to
adjust the brightness of images, resulting in a photo effect
that ismore similar to human perception. Both Tonemapping
and Gamma correction are intended to improve the display
of images on LDR devices by transforming the range of
brightness values from one distribution to another. Inspired
by the above observation, and also inspired by Bag of Words
(BoW) (Sivic & Zisserman, 2003) in feature engineering, we
propose Bag of Curves (BoC) to generate negative samples
for contrastive learning. Specifically, we leverage standard
curves in Tone mapping and Gamma correction to realize
reversed gonemapping and reversedGammacorrection. This
waymaps the brightness of {Ip} to a certain range to generate
over/underexposed images as negative samples. This range
could destroy the original brightness of {Ip} but could follow
the physical imaging principle.

IN ∈ BoC = {Cg,Cs,Cl} (2)

In BoC, we select three curves, the Gamma curve Cg from
Gamma correction, the Sigmoid curve Cs , and the logarith-
mic curveCl in Tonemapping to generate over/underexposed
images as negative samples for contrastive learning, which
are directly and parallel functionedwith the positives IP . The
curves representation of BoC are shown in Fig. 4.

Gamma Curve The Gamma curve Cg is defined as follows:

{Cg} = {I γ
p } (3)

A Gamma value γ < 1 is sometimes called an encoding
Gamma, and the process of encoding with this compressive
power-law nonlinearity is called Gamma compression; con-
versely, a Gamma value γ > 1 is called a decoding Gamma,
and the application of the expansive power-law nonlinear-
ity is called Gamma expansion. We set γ = 0.2 to generate
overexposed images and γ = 8 to generate underexposed
images. Sigmoid curve The Sigmoid curveCs is a nonlinear
function curve. Yongqing (2013) succeeded in expanding the
local dynamic range in dark and bright areas by dodging and
burning with the Sigmoid curve operator. The formula for
the Sigmoid curve Cs is as follows:

{Cs} =
{

1

1 + e10·(c−Ip)

}
(4)

where c represents the offset of the Sigmoid curve. By adjust-
ing the values of c, the shape of the Sigmoid function can be
controlled to achieve different brightness adjustment effects.
For underexposure, the value of c can be set to a value smaller
than the brightness of Ip, and 0.3 is selected in our setting.
Similarly, for overexposure, the value of c is 0.8.

Logarithmic CurveThe Logarithmic curveCl is approaching
HVS’s perception of brightness (Drago et al., 2003). The
formula for the Logarithmic curve Cl is as follows:

{Cl} = {m · log2 (1 + IP )} (5)

The smaller the value of constant m, the weaker the effect
of Logarithmic transformation and the lower the bright-
ness of the image. We set m = 10 and m = 40 to generate
under/overexposed negatives.

As shown in Fig. 5, the three curves can adjust the bright-
ness of the image to guide its brightness distribution on the
highlight or low-light side of the brightness histogram in
quite different forms, which could be effectively negative
samples for contrastive feature learning.

In contrastive learning, it is necessary to ensure a clear
boundary between negative samples and positive samples in
the feature space. Negative samples should also be as clus-
tered as possible in the feature space. Therefore, generating
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Fig. 4 Bag of Curves. There are three different groups of curves: Gamma, Sigmoid, and Logarithmic curves enable the model to learn diverse and
representative characteristics of the produced negative samples

Fig. 5 BoC samples and their histogram from normal lighting sam-
ple (positives) to negatives, using Gamma, Sigmoid, and Logarith-
mic curves, respectively. These three curves effectively make the
brightness of the normal illumination image distributed in the under

(−)/overexposed (+) areas of the histograms. The (−)/(+) samples have
quite different histograms and appearances but follow the physical
imaging laws, making the negative samples effective for contrastive
learning

representative negative samples is considered crucial. We
achieve this by using fixed values to generate underexposed
or overexposed negative samples that represent the entire
sample category.

From Fig. 6, it can be observed that when the parame-
ter values (e.g., γ , c, m) is fixed, the boundary between the
normal illumination image (Positives) and the underexposed
negative sample (Negatives-) and overexposed negative sam-
ple (Negatives+) is more distinct. This results in higher
discrimination in the feature space and effective compres-
sion of the feature space. However, when the parameter value
falls within a certain range, some negative samplesmay over-
lap with the normal illumination image in the feature space,
causing interference in feature learning.

3.2.2 Contrastive Learning Detail and Its Loss

We use the images IH enhanced by a low-light image
enhancement network as anchors for contrastive learn-
ing. For negative samples, we adjust the brightness of

normal-light images using BoC and transform them into
over/underexposed images IN . Positive samples are the
normal-light images IP . The positive and negative samples
do not pair with each other or the anchor image, i.e., from
different scenes.

Feature Extraction Network We incorporate a pre-trained
VGG-16 model to extract the feature map f ∈ R

C×H×W

for the latent feature space, where Gl
i j is the inner product

between the feature maps i and j in the layer l:

Gl
i j =

∑
k

f lik f
l
jk (6)

where k represents the vector length. We then get a set of
Grammatrices

{
G1,G2, . . . ,GL

}
from layers 1, ..., L in the

feature extraction network. The GrammatrixG is a quantita-
tive description of latent image features. Contrastive learning
aims to learn a feature space in which samples of the same
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Fig. 6 Visualization of features. InBoC, the three curves included in the
paper have fixed parameter values in (a), while in (b), they randomly
fall within a certain range. In a, the boundary between positive and
negative samples is more pronounced, indicating a clearer separation
between the two classes

category should be closer to each other while samples of
different categories should be farther away.

Contrastive LossAreasonable contrastive loss is necessary to
pull the anchors into the positive samples and push away the
anchors from the negative samples in the latent space. Triplet
loss (Hermans et al., 2017), N-pair loss (Sohn, 2016), and
InfoNCE loss (Gutmann & Hyvärinen, 2010) are commonly
used loss functions in contrastive learning. The choice of
which loss function to use depends on the specific task and
dataset we discuss in Sect. 4.2.3. In PIE, we mix the triple
loss and infoNCE loss in contrastive learning to design the
contrastive learning loss.We utilize triplet loss for the Gram

matrix G, aiming to:

d(GIH ,GIP ) � d(GIH ,GIN ) (7)

where d represents the distance between features. Unlike
Gram matrix G, we use infoNCE loss for the expectation
value E , our goal is:

d(EIH , EIP ) � d(EIH , EIN ) (8)

We wish that the distance d between features IH and IP is
smaller than the distance between features IH and IN . Based
on the aforementioned objectives, we designed LcG and LcE

as two components of contrastive learning loss Lc.
For Gram matrix G:

LcG = max
{
d(GIH ,GIP ) − d(GIH ,GIN ) + α, 0

}
(9)

α is a hyperparameter, and we set it to 0.3.
For the expectation E :

LcE = −log
exp(d(EIH , EIP ))

exp(d(EIH , EIP )) + exp(d(EIH , EIN ))
(10)

Therefore, the contrastive loss function in PIE is expressed
as follows:

Lc = LcG + LcE (11)

The Numbers of Positive and Negative Samples In a theoret-
ical work (Li et al., 2021b), the author argued that a 1:1 rate
of positive to negative samples is sufficient for triplet loss.
The author also observed significant benefits in contrastive
learning of visual representations from randomness. Inspired
by this work, our method involves using one underexposed
and one overexposed sample as negatives for each scene.
Positive and negative samples are randomly selected during
each iteration of training to enhance the model’s robustness.
Our positive and negative samples are obtained from the
SICE dataset (Cai et al., 2018), which consists of 589 scenes
(360 scenes in Part1 and 229 scenes in Part2) with a total of
4413multi-exposure images. In our method, all 360 standard
images in all scenes of Part1 are used as positive samples,
while negative samples are generated by applying BoC to the
standard images to produce under/overexposed images.

In Sect. 4.2.3, we investigate the impact of different rates
of positive and negative samples (1:1, 1:5, 5:1, and 5:5 in
a batch) on low-light enhancement results. Additionally, we
consider the average training time for each epoch, which
involves training on all samples in the training set once.
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Fig. 7 Demonstration of the enhanced images {IH } and segmentation
results after Graph-based pixel-level segmentation S

3.3 Regional SegmentationModule

3.3.1 Unsupervised Super-Pixel Segmentation

In real-world scenes, it is expected that the same region
of an object should have uniform brightness, while the
enhancement strategies applied to the background and fore-
ground should be different. To address this issue, Liang
et al. (2022) incorporates a semantic segmentation module
to prevent local overexposure or underexposure. However,
the use of a semantic segmentation module resulted in the
model’s dependence on semantic ground truth. PIE intro-
duces an unsupervised regional segmentation module that
uses a super-pixel segmentation to maintain regional bright-
ness consistency and enable region-discriminate enhance-
ment while avoiding reliance on semantic labels. For this
purpose, we employ a Graph-based supervised super-pixel
segmentation method (Felzenszwalb & Huttenlocher, 2004)
as illustrated in Fig. 7. We first use super-pixel segmentation
to divide an image into super-pixel blocks. Then, we utilize
the regional brightness consistency loss Lrc to maintain the
consistency of brightness within each region.

The output is a segmentation component S = {c1, c2...}.
During the Graph-based super-pixel segmentation process, it
compares the inter-domain difference Di f

(
ci , c j

)
between

two different regions ci and c j , with the minimum intra-
domaindifferenceMint

(
ci , c j

)
between the smallest regions,

ci and c j , within these two segmentation regions. If the dif-
ference between components is larger than the minimum
internal difference, it indicates that there is a boundary
between these two regions; otherwise, these two regions are
mergedwhile other regions remain unchanged.The judgment
method is as follows:

D
(
ci , c j

) =
{

True Di f
(
ci , c j

)
> Mint

(
ci , c j

)
False otherwise

(12)

3.3.2 Regional Brightness Consistency Loss

The application of super-pixel segmentation frees ourmethod
from dependence on semantic ground truths information.We
define an average value B of the brightness level of the overall
pixels in each super-pixel block c ∈ S as follows:

Bc = 1

n

∑
i∈θc

(Bi
IH ) (13)

where c represents the cth super-pixel block, and we can
attain multiple averages representing individual super-pixel
block separately {B1, B2, . . .}. n represents the number of
pixels in this super-pixel block. We denote θc as the pixel
index collection belonging to block c, Bi

IH
as the brightness

level in the enhanced image IH at the block c. The regional
brightness consistency loss Lrc is defined as:

Lrc =
C∑
c=1

∑
i∈θc

(Bi
IH − Bc)

2 (14)

where C is the number of the super-pixel blocks.

3.4 Other Details

3.4.1 Feature Preservation Loss

Many low-level visual tasks (Ledig et al., 2017; Kupyn et
al., 2018; Johnson et al., 2016) use the perceptual loss to
make desired images and their features and ground truth per-
ceptually consistent. We also leverage perceptual loss as our
feature retention loss to preserve the image features before
and after enhancement. The feature retention loss L f r is
defined as:

L f r = 1

ClWl Hl
( f l(IL) − f l(IH ))2 (15)
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where f l(IL) denotes the feature map f ∈ R
C×H×W of the

input image IL in the layer l, and f l(LH ) is the feature map
of the enhanced image IH in the layer l.

Since the color naturalness is one of the significant
concerns of LLE, we add a color constancy term Lcc incor-
porating with the feature retention term, following the way
reported in Guo et al. (2020). Based on the gray-world color
constancy hypothesis (Buchsbaum, 1980), the pixel averages
of the three channels tend to be the same value. Lcc constrains
the ratio of three channels to prevent potential color devia-
tions in the enhanced image. In addition, to avoid aggressive
and sharp changes between neighboring pixels, an illumina-
tion smoothness penalty term is also embedded in Lcc. The
formulation of Lcc can be expressed as:

Lcc =
∑

∀(p,q)∈ξ

(J p − Jq)2

+ λ
1

M

M∑
m=1

∑
p∈ξ

(∣∣�x A
p
m
∣∣ + ∣∣�y A

p
m
∣∣) ,

ξ = {R,G, B}

(16)

where J p denotes the average intensity value of p channel
in the enhanced image, (p, q) represents a pair of channels,
M is the number of the iterations, and �x and �y denote the
horizontal and vertical gradient operations, respectively. A is
a parameter map with the same size as the image. Each pixel
has a corresponding higher-order curve parameter generated
inmultiple iterations. Ap

m denotes the parametermap of chan-
nel p inmth iteration. We set λ to 200 in our experiments for
the best outcome.

The feature preservation loss L f p is the sum of L f r and
Lcc.

3.4.2 Efficient Training Details

In our implementation, the feature extraction network is pre-
trained on ImageNet (Russakovsky et al., 2015), the CBDNet
is pre-trained onBSD500 (Martin et al., 2001),Waterloo (Ma
et al., 2017), MIT-Adobe FiveK (Bychkovsky et al., 2011)
and RENOIR dataset (Anaya & Barbu, 2018). We train PIE
end-to-end while fixing the weights of the feature extraction
network. The back-propagated operation only updates the
weights in the image enhancement network. Hence, most
network computation is done in the image enhancement
network, which efficiently learns IH from (IL , IN , IP ) to
recover the enhanced image with various scenes. We resize
the training images to the size of 384 × 384. As for the
numerical parameters, we set the maximum epoch as 10 and
the batch size as 2.Our network is implementedwithPyTroch
on an NVIDIA 1080Ti GPU. The Adam optimizer optimizes
the model with a fixed learning rate 1e−4.

3.4.3 Downstream Task-Driven LLE

Weaim to explorewhether PIE can benefit downstream tasks.
WeevaluatedLLEon three tasks: semantic segmentation, and
face detection.

Semantic Segmentation Our earlier work (Liang et al., 2022)
with a semantic brightness consistency loss has demonstrated
the effectiveness of LLE in improving downstream seman-
tic segmentation. In this study, to validate the gain of PIE on
semantic segmentation,we replace the regional segmentation
module in PIE with the same semantic segmentation mod-
ule used in Liang et al. (2022). Additionally, we replace the
regional brightness consistency loss Lrc with the semantic
brightness consistency loss Lsc. The semantic segmentation
network we use here is the popular DeepLabv3+ (Chen et
al., 2018), and we train our network on the training images
of the Cityscapes (Cordts et al., 2016) dataset.

Face Detection For face detection, we replace the regional
segmentation module in the PIE with the RetinaFace (Deng
et al., 2020) trained on the WIDER FACE dataset (Yang et
al., 2016) and replace the regional brightness consistency
loss Lrc with a face detection loss Ldet . The face detec-
tion loss Ldet includes two components: Lcls and Lbox .
Lcls is the softmax loss for binary classification (face/not
face), while Lbox is the face box regression loss which is
based ond (Girshick, 2015). The PIE network for face detec-
tion, called PIEdet , is fine-tuned using 4000 images from the
DARKFACE dataset (Yang et al., 2020). During training, the
parameters of the RetinaFace are fixed, and the RetinaFace
is introduced only to calculate the detection loss to guide the
optimization of the low-light enhancement model.

More details regarding the downstream task-driven LLE
will be presented in the following experiments outlined in
Sect. 4.3.

4 Experiments

4.1 Cross-Dataset Peer Comparison

For testing images, we use six publicly available low-light
image datasets from other reported works, i.e., DICM (Lee et
al., 2012), MEF (Ma et al., 2015), LIME (Guo et al., 2016),
NPE (Wang et al., 2013), VV1 and the Part2 of SICE (Cai
et al., 2018). DICM, LIME, MEF, VV, NPE, and SICE are
ad hoc test datasets, including 64, 10, 17, 24, 8, and 229
images, respectively. They are widely used in LLE testing:
SCL-LLE (Liang et al., 2022), EnlightenGAN (Jiang et al.,
2021), Zero-DCE (Guo et al., 2020). Images in these datasets
are diverse and representative: DICM is mainly landscaped

1 https://sites.google.com/site/vonikakis/datasets.
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Fig. 8 Demonstration of PIE and the state-of-the-art methods over VV (the first sample) and DICM (the second sample) datasets with zoom-in
regions. PIE enables the enhanced images to look more realistic and recovers better details and richer color in both foreground and background

with extreme darkness; LIME focuses on dark street land-
scapes; MEF focuses on dark indoor scenes and buildings;
VV is mostly backlit and portraits; NPEmainly includes nat-
ural scenery in low light; SICE is a large-scalemulti-exposure
image dataset that contains high-resolution image sequences
of multiple scenes. Note that all the images in the six datasets
are independent cross-scene images without any overlapped
scene of the input image and the positive/negative samples.

We compare our proposed method with 13 representative
state-of-the-art methods for heterogeneous image enhance-
ment. These included the conventionalmethodLIME (Guo et
al., 2016), the GAN-based method EnlightenGAN (Jiang et
al., 2021), and four Retinex-basedmethods: RetinexNet (Wei
et al., 2018), RUAS (Liu et al., 2021), ISSR (Fan et al.,
2020), and Zero-DCE (Guo et al., 2020), which leverages

the same backbone enhancement network as our proposed
method.We further include two reinforcement learning based
method ReLLIE (Zhang et al., 2021a) and ALL-E (Li et al.,
2023b), four more recent methods Uretinex-net (Wu et al.,
2022a), SCI (Ma et al., 2022), PairLLE (Fu et al., 2023),
and IRN (Zhao et al., 2021), and our earlier conference ver-
sion (Liang et al., 2022). We reproduce the results of these
methods using recommended test settings and publicly avail-
able models.

4.1.1 Visual Quality Comparison

We first examine whether the proposed methods can achieve
visually pleasing results in brightness, color, contrast, and
naturalness.We observe fromFigs. 8 and 9 that all the SOTAs
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Fig. 9 Demonstration of PIE and the state-of-the-art methods with a
night-view sample in LIME dataset with zoom-in regions. PIE enables
enhanced images with more realistic color and details in both fore-

ground and background and retouching with a negligible noise level on
the dark background (the sky) (Color figure online)

sacrifice over/under/uneven exposure in global or local areas.
Specifically, LIME (Guo et al., 2016) leads to color arti-
facts in strong local edges (e.g., hair and sky, and inverted
reflection in the water); RetinexNet (Wei et al., 2018) and
EnlightenGAN (Jiang et al., 2021) cause global color dis-
tortions with details missing; ISSR (Fan et al., 2020) and
RUAS (Liu et al., 2021) generate severe global and local
over/underexposure; ReLLIE (Zhang et al., 2021a) suffers
fromover-enhancement and over-smoothing. In contrast, PIE
recovers more details and better contrast in both foreground
and background, thus enabling the enhanced images to look
more realistic with vivid and natural color mapping.

4.1.2 No-Referenced IQA

For testing using no-referenced image quality assessment
(IQA),weadoptNatural ImageQualityEvaluator (NIQE) (Mit-
tal et al., 2013), a well-known no-reference image quality
assessment for evaluating image restoration without ground
truth and providing quantitative comparisons. Since some
work criticizes that NIQE correlates poorly with subjective
human opinion,we also adoptUNIQUE (Zhang et al., 2021b)
for No-referenced IQA. Smaller NIQE and larger UNIQUE
indicate more naturalistic and perceptually favored quality.
The NIQE and UNIQUE results on five datasets (DICM,
LIME, MEF, VV, and NPE) are reported in Table 1. Com-

pared with other state-of-the-art methods, PIE achieves the
best results for the NIQE in two of the five datasets, achieves
the best results for the UNIQUE in four of the five datasets,
and the average results on these five datasets are the best.

4.1.3 Full-Referenced IQA

For full-reference image quality assessment, we utilize the
Peak Signal-to-Noise Ratio (PSNR, dB) and Structural Simi-
larity (SSIM) metrics to compare the performance of various
methods quantitatively. PSNR is commonly used in low-level
vision tasks, and its value is always non-negative. A higher
PSNR value indicates better quality. On the other hand,
SSIMmeasures image similarity based on image brightness,
contrast, and structure. Since the five datasets used in the pre-
vious test do not contain standard images, we use Part2 of the
SICE dataset (Cai et al., 2018) without overlapping the train-
ing data. PIE demonstrates excellent performance on both
PSNR and SSIMmetrics, achieving the best performance on
the SSIM metric and the second-highest PSNR score, only
behind Uretinex-net (Wu et al., 2022a), as shown in Table 2.

4.1.4 Human Subjective Survey

We conduct a human subjective survey (user study) for com-
parisons. For each image in the five test datasets (DICM,
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Table 2 PSNR ↑ and SSIM ↑ on the Part2 of the SICE dataset

Methods LIME R.Net ISSR Z.-DCE E.GAN RUAS ReLLIE U.-net SCI IRN ALL-E PairLIE SCL-LLE PIE

PSNR ↑ 13.67 16.98 15.01 14.78 17.82 10.62 18.17 20.61 12.04 13.62 8.40 15.82 17.95 19.79

SSIM ↑ 0.62 0.66 0.65 0.62 0.66 0.44 0.67 0.66 0.64 0.52 0.30 0.65 0.68 0.68

The best results are highlighted in bold, and the second best results are underlined

Fig. 10 The results in the human subjective survey. The color-changing from hot to cool means the quality transition from best to worst; the y-axis
denotes the number of images in each ranking index (Color figure online)

Fig. 11 Ablation study on the contribution of the regional brightness consistency loss Lrc

LIME, MEF, VV, and NPE) enhanced by thirteen meth-
ods (LIME, Retinex-Net, Zero-DCE, ISSR, EnlightenGAN,
RUAS, ReLLIE, SCL-LLE, SCI, IRN, ALL-E, and PIE), we
ask 11 human subjects to rank the enhanced images. These
subjects are instructed to consider:

(1) Whether or not the images contain visible noise.
(2) Whether the images have overexposed or underexposed

artifacts.

(3) Whether the images show non-realistic color or texture
distortion.

We assign a score to each image on a scale of 1–5, with lower
values indicating better image quality.

Each image is assigned a score ranging from 1 to 5, with
lower scores indicating better image quality. The final results
are presented in Table 1 and Fig. 10. Among all the methods
evaluated, PIE achieves the best image quality.
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Fig. 12 Ablation study on the contribution of each loss for PIE and SCL-LLE (Liang et al., 2022)

Table 3 Ablation study. NIQE ↓ and UNIQUE (UN.) ↑ scores on the testing sets

Methods DICM LIME MEF VV NPE Average

NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑
Input 4.26 0.72 4.36 0.70 4.26 0.72 3.52 0.74 4.32 1.17 4.13 0.75

w/o Lc (SCL-LLE) 4.31 0.64 4.36 0.57 4.25 0.56 4.10 0.70 4.28 1.02 4.27 0.66

w/o Lsc (SCL-LLE) 3.53 0.83 3.85 0.76 3.32 1.18 3.21 0.50 3.98 1.02 3.49 0.82

w/o L f r (SCL-LLE) 3.54 0.80 3.88 0.71 3.32 1.22 3.18 0.47 3.97 1.03 3.50 0.80

w/o Lc (PIE) 4.57 0.67 4.54 0.52 4.61 0.52 3.64 0.72 4.34 1.02 4.38 0.66

w/o Lrc (PIE) 3.54 0.94 3.85 0.76 3.32 1.32 3.01 0.54 3.87 1.02 3.45 0.90

w/o L f r (PIE) 3.50 0.94 4.26 0.79 3.63 1.24 3.03 0.58 4.08 1.09 3.53 0.91

w/o Neg. samples (PIE) 3.55 0.81 3.84 0.72 3.36 1.14 3.14 0.38 3.95 1.01 3.49 0.78

w/o overexp. Neg. (PIE) 3.59 0.75 3.91 0.59 3.36 1.24 3.15 0.37 4.12 0.87 3.54 0.74

w/o underexp. Neg. (PIE) 4.58 0.57 4.52 0.48 4.69 0.46 3.58 0.65 4.36 0.86 4.38 0.58

Gamma curves only 3.52 0.96 3.79 0.81 3.22 1.19 3.01 0.63 3.75 1.18 3.39 0.95

Sigmoid curves only 3.51 0.97 3.77 0.82 3.31 1.19 3.10 0.61 3.80 1.23 3.40 0.93

Logarithmic curves only 3.52 0.97 3.86 0.79 3.32 1.33 3.14 0.63 3.84 1.18 3.47 0.94

SCL-LLE 3.51 0.87 3.78 0.76 3.31 1.25 3.16 0.49 3.88 1.08 3.46 0.85

PIE 3.47 0.99 3.78 0.83 3.22 1.32 2.98 0.58 3.72 1.23 3.38 0.95

The best results are highlighted in bold
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Table 4 Discussion on the
contrastive loss

LcG LcE Lc = LcG + LcE

Triple N-pair InfoNCE Triple N-pair InfoNCE NIQE↓ UN.↑ PSNR↑ SSIM↑
� � 3.44 0.93 18.44 0.67

� � 3.65 0.83 15.08 0.62

� � 3.38 0.95 19.79 0.68

� � 4.26 0.67 10.69 0.44

� � 5.04 0.43 8.49 0.28

� � 4.16 0.41 12.19 0.49

� � 5.13 0.43 8.37 0.27

� � 5.34 0.21 7.26 0.18

� � 4.94 0.15 9.28 0.31

The best results are highlighted in bold
The NIQE and UNIQUE scores are the average results on five datasets: DICM, LIME, MEF, VV, and NPE.
The PSNR and SSIM scores are the results on the Part2 of the SICE dataset

Table 5 Comparisons of different positive and negative sample rates

Positive Negative DICM LIME MEF VV NPE Average Average training

NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ NIQE↓ UN.↑ time/epoch (min.)

1 1 3.47 0.99 3.78 0.83 3.22 1.32 2.98 0.58 3.72 1.23 3.38 0.95 73.6

1 5 3.47 0.99 3.74 0.85 3.22 1.33 2.96 0.57 3.74 1.20 3.37 0.95 131.3

5 1 3.38 0.93 3.90 0.71 3.30 1.31 3.03 0.48 3.91 1.04 3.46 0.90 126.8

5 5 3.38 0.96 3.86 0.80 3.28 1.32 2.99 0.53 3.89 1.09 3.43 0.86 158.6

The best results are highlighted in bold
The baseline is PIE with the rate of 1:1

4.2 Ablation Study

In this section, we perform ablation studies to demonstrate
the effectiveness of each component of PIE.

4.2.1 Contribution of Each Loss

In this section, we explore the impact of each loss on PIE and
compare them with the loss in our baseline SCL-LLE (Liang
et al., 2022). We consider the color consistency item Lcc,
initially proposed and tested in Zero-DCE (Guo et al., 2020),
as a baseline itemwithout conducting an ablation study.Thus,
we test the feature preservation loss L f p using the first item
L f r .

We perform ablation studies to demonstrate the effective-
ness of three different loss functions in PIE: the contrastive
learning loss Lc, the feature retention loss L f r , and the
regional brightness consistency loss Lrc. Figure 12f–i shows
the visualized samples with their corresponding histograms
of the effects of Lc, Lrc, and L f r functions in PIE. In Fig. 11,
the enhanced result without using the regional segmentation
module (b) exhibits color deviations. On the other hand, the
enhanced result with the regional segmentation module (c)
demonstrates that different regions can maintain their own
colors, and there is a better distinction between the fore-

Fig. 13 The semantic segmentation results of the input low-light images
after enhancement.When using the original input (γ = 1), the semantic
segmentation with all the enhancement models could not surpass the
initial input. When γ becomes larger, the mIoU of segmentation after
using our method has been significantly better than those using the
original images

ground and background (e.g., balloon, vehicles, and tower).
Table 3 shows each loss’s averageNIQE andUNIQUE scores
on five test sets. We find that the contrastive learning loss Lc

significantly controls the exposure level. The results with-
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Fig. 14 Visual comparison of seven LLE methods for semantic segmentation

out the regional brightness consistency loss Lrc in PIE,
and without the feature retention loss L f r have relatively
lower contrast (e.g., in the sky region) than the final result.
Furthermore, we compare the performance of PIE with SCL-
LLE (Liang et al., 2022). The contrastive learning loss Lc in
PIE is more critical and effective in controlling the expo-
sure level than in SCL-LLE. However, due to the use of
an unsupervised method, the contribution of the Regional
Brightness Consistency Loss Lrc in PIE is slightly worse
than the Semantic Brightness Consistency Loss Lsc in SCL-
LLE.

The losses enhance images with fine details and more nat-
uralistic and perceptually favored quality. The corresponding
histograms show that the final losses maintain a smooth
mixture-of-Gaussian-like global distribution with rare over
or under-saturation areas. In contrast, the undesirable unilat-
eral over or under-saturation areas occur in the histograms of
Fig. 12b–d and f.

4.2.2 Contribution of the Curves in BoC

In the BoC method, we apply three types of curves—
Gamma, Sigmoid, and Logarithmic to adjust the brightness
of images. To investigate the contribution of each curve to
our method, we separately use each type of curve to generate
over/underexposed images. As shown in Table 3, all three
types of curves can produce over/underexposed images as

Table 6 The average precision (AP) for face detection in low-light
conditions on the DARK FACE dataset was evaluated using different
IoU thresholds (0.5, 0.7, 0.9)

Methods IoU thresholds

0.5 0.7 0.9

Input 0.2820 0.0693 0.0002

LIME (Guo et al., 2016) 0.4221 0.1068 0.0004

RetinexNet (Wei et al., 2018) 0.3874 0.1065 0.0002

ISSR (Fan et al., 2020) 0.2825 0.0674 0.0001

Zero-DCE (Guo et al., 2020) 0.4130 0.1067 0.0002

EnlightenGAN (Jiang et al., 2021) 0.3762 0.1009 0.0003

RUAS (Liu et al., 2021) 0.2782 0.0659 0.0002

ReLLIE (Zhang et al., 2021a) 0.3583 0.0958 0.0001

PIE 0.4199 0.1082 0.0003

PIEdet 0.4288 0.1104 0.0003

The best results are highlighted in bold

negative samples for contrastive learning, which can help
the model better learn the features of the data.

4.2.3 Discussion for Contrastive Learning

Discussion for Contrastive Loss Triplet loss (Hermans et al.,
2017),N-pair loss (Sohn, 2016), and InfoNCE loss (Gutmann
&Hyvärinen, 2010) are commonly used in contrastive learn-
ing to pull the anchor closer to the positive sample and push
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Fig. 15 Qualitative comparison of face detection without and with PIE.
The detector is RetinaFace (Deng et al., 2020)

it away from the negative sample in the latent feature space.
In PIE, we apply contrastive losses, LcG and LcE , respec-
tively, to the gram matrix G and the expectation E to help
the model learn features that represent positive samples and
avoid features that represent negative samples. We find that
applying different forms of contrastive losses to LcG and LcE

results in different gains. Table 4 shows the results of training
with different loss forms for LcG and LcE . We find that using
triplet loss for LcG and infoNCE loss for LcE achieved the
best results in terms of fourmetrics: NIQE,UNIQUE, PSNR,
and SSIM. Numbers of positive and negative samples We
conduct further experiments to explore the effect of differ-
ent rates between positive and negative samples. For positive
samples, we randomly select them from the positive sample
dataset. We use our PIE with the rate of 1:1 as the baseline,
and all experimental settings are the same as before, except
for the number of samples. As the batch size increases, the
GPUmemory size required for training will increase, and the
training time required for training an epoch (i.e., the process
of using all samples in the training set to train once) will also

significantly increase. Considering these factors, we use at
most 5 positive or negative samples.

As shown in Table 5, adding more negative samples
resulted in better performance, while adding more positive
samples led to worse results. We conjecture that this is due
to the different positive patterns that confuse the low-light
image and hinder its capability to learn useful patterns. For
negative samples, using more samples helped the model
move away from the poor patterns in the over/underexposed
images. However, increasing the number of negative samples
also increased the training time.When we train using the rate
of 1:1, the time required to train an epoch is 73.6 min. When
we train using the rate of 1:5, the time required to train an
epoch increases to 131.3 min. Therefore, in our experiments,
we use the rate of 1:1, except for Table 5.

4.3 Gain for DownstreamTasks

4.3.1 Semantic Segmentation with PIE

Current low-light image datasets lack semantic annotation,
which makes it difficult to evaluate semantic segmentation
performance before and after enhancement. To address this
issue, we use subsets of Frankfurt, Lindau, and Munster
from the Cityscapes validation set. Additionally, we simu-
late low-light images with varying brightness levels using
the standard positive Gamma transformation with a range of
Gamma values. The trends of mean intersection-over-union
(mIoU) with the brightness of the scene are shown in Fig. 13.
Among all the methods, the segmentation performance with
our method tends to be the best when scenes become dark.
In Fig. 14, our method effectively improves semantic seg-
mentation performance compared with LLE state-of-the-art
methods. These findings motivate us to explore ways to
bridge the gap between current low-light enhancement meth-
ods and downstream tasks.

4.3.2 Face Detection with PIE

Weuse RetinaFace (Deng et al., 2020) trained on theWIDER
FACE dataset (Yang et al., 2016) as the face detector. Two
thousand images in the DARK FACE dataset Yang et al.
(2020) are used as test input, and different methods are used
to enhance them respectively. Then,we feed the results of dif-
ferent low-light image enhancement methods to RetinaFace.
To evaluate the accuracy of the model, we compare the aver-
age precision (AP) under different IoU thresholds (0.5, 0.7,
and 0.9). A target is considered detected when the IoU is
greater than 50%. Table 6 shows the AP results, with a focus
on the IoU threshold of 0.5. All low-light image enhancement
methods except ISSR and RUAS improve the face detection
performance on the dataset. However, when we set a higher
IoU threshold, the AP scores of all methods decrease. Our
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Table 7 Experimental results of
test-time cost comparison

Method GFLOPs ↓ Runtime (s) ↓
LLNet (Lore et al., 2017) 4124.17 36.270

MBLLEN (Lv et al., 2018) 301.12 13.995

KinD++ (Zhang et al., 2021c) 12238.02 1.068

Zero-DCE (Guo et al., 2020) 84.99 0.003

EnlightenGAN (Jiang et al., 2021) 273.24 0.008

ReLLIE (Zhang et al., 2021a) 125.13 1.480

LIME (Guo et al., 2016) (on CPU) 21.530

Retinex-Net (Wei et al., 2018) 587.470 0.120

ISSR (Fan et al., 2020) (unavailable) 9.645

RUAS (Liu et al., 2021) 1.069 0.006

IRN (Zhao et al., 2021) 12438.282 4.216

SCI (Ma et al., 2022) 0.580 0.010

ALL-E (Li et al., 2023b) 113.85 1.055

SCL-LLE (Liang et al., 2022) 95.21 0.004

PIE 85.54 0.004

The best results are highlighted in bold

PIE method, which does not require paired training data,
achieved a comparable score to the best result produced by
LIME at the IoU threshold of 0.5, even without joint train-
ing with a face detection model. However, as mentioned
earlier, LIME’s subjective and quantitative results are not
satisfactory. In contrast, our method produces better visual
results. Our approach, PIEdet , achieves the best performance
by trainingwith a joint face detectionmodel. Figure 15 shows
the comparison between the original detection and detection
with our PIE.

4.4 Test-Time Cost Comparison

We compare the test runtime and computational costs
(measured in Giga floating-point operations per second,
GFLOPs) of our method with state-of-the-art methods
(LLNet, MBLLEN, KinD++, Zero-DCE, EnlightenGAN,
ReLLIE, LIME, Retinex-Net, ISSR, RUAS, IRN, SCI,
ALL-E, SCL-LLE). All indicators are recorded with full
processing for 32 images of size 1200 × 900 × 3 using an
NVIDIAGTX1080TiGPU.As shown inTable 7, ourmethod
is only slightly slower than Zero-DCE (our backbone LLE
Network), but much faster than most other methods exclud-
ing Zero-DCE in terms of runtime. This indicates that PIE
has high speed and can quickly process a large number of
images. Our method achieves a moderate level in terms of
computational cost (GFLOPs).

4.5 Failure Cases

In Fig. 16, we showcase two scenarios in which the
Performance-Improvement Enhancement algorithm encoun- Fig. 16 The failure cases
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ters failures. These failures arise when the low-light image
input contains a substantial amount of noise. Similar to other
established approaches like LIME and EnlightenGAN, our
method also exhibits the presence of background stripe noise
in the enhanced images, which is influenced by the inherent
noise in the original image. To address this issue, a module
for removing stripe noise can be incorporated as a solution.

5 Conclusion

We propose physics-inspired contrastive learning for low-
light image enhancement (PIE). This is achieved by introduc-
ing Bag of Curves in contrastive learning, which efficiently
generates negative samples thatmimic theGammacorrection
and Tone mapping processes in the ISP pipeline. BoC gener-
ates under/overexposed images aligned with the underlying
physical imaging principles. Additionally, the regional seg-
mentation module is an unsupervised method that maintains
regional brightness consistency and removes the depen-
dence on semantic ground truths. Extensive experiments
demonstrate that our method outperforms the state-of-the-
art LLE models on six independent cross-scene datasets.
Furthermore, we conduct experiments combining LLE with
semantic segmentation, object detection, and image classi-
fication, demonstrating that PIE benefits downstream tasks
under extremely dark conditions. The proposed method runs
fast with reasonable GFLOPs in test time, making it easy to
use on mobile devices.
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